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D-Galactosamine (GalN) induces acute hepatitis in experimental animals; this hepatitis has been shown to be
suppressed by oral or intraperitoneal administration of modified arabinoxylan from rice bran (MGN-3), and
active low molecular fraction isolated from MGN-3 (LMW). We previously reported that this protective
mechanism is mediated in part by downregulation of interleukin-18 (IL-18). The present study shows for
the first time that nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and CD14 are
involved in the suppressive action of LMW on GalN-induced hepatitis. Wistar rats (aged 4 weeks, SLC)
were intraperitoneally treated with either MGN-3 or LMW. Then, rats were given GalN at 400 mg/kg at 1 h
after the initial treatment. The serum activity of transaminases (ALT and AST) was significantly higher after
GalN treatment; these changes were attenuated by MGN-3 and LMW. Furthermore, LMW abrogated inhibitor
of κB kinase (IκB) degradation induced by GalN, and this was associated with the inhibition of NF-κB activa-
tion. Moreover, phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase (JNK) protein
expression in the liver after GalN treatment was significantly higher, and LMW reduced this increase. We
also found that GalN treatment induced TLR4 and CD14 mRNA expression, and LMW significantly inhibited
CD14mRNA expression. These results suggest that the suppressive effects of LMW on GalN-induced hepatitis
are possibly related to inhibition of NF-κB, JNK phosphorylation and CD14 expression.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Hepatitis is a serious health problem worldwide associated with
significant morbidity and mortality. A better knowledge of the basic
mechanisms governing immune response in the pathogenesis of
liver disease has allowed the development of targeted therapies for
the management and treatment of hepatitis [1–3]. D-Galactosamine
(GalN)-induced hepatitis has been used as an animal model for
acute liver injury, since its morphological and pathophysiological
characteristics are similar to those of humanhepatitis B [4,5]. Hepatitis
induced by GalN in rats is considered to be mediated by inhibited
macromolecular glycoprotein and RNA biosynthesis through deple-
tion in cellular UTP concentration [6] and elevation of blood levels of
tumor necrosis factor-α (TNF-α) caused by increasing absorption of
lipopolysaccharide (LPS) endotoxin, from the intestine to the blood-
stream [7,8]. However, the precise mechanism for GalN-induced
hepatitis has not yet been elucidated.

MGN-3, amodifiedwater-soluble hemicellulose from rice bran has a
variety of immune functions. It has been reported that NK cell, T cell, and
B cell functions are augmented by MGN-3 both in vitro and in vivo
n N-terminal kinase; MAPK,
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[9–11]. In addition, when MGN-3 is administered in conjunction with
conventional chemotherapeutic agents, it has been highly effective
in inducing cancer remission in animal models [4]. In our previous
study, we showed that GalN-induced hepatitis was suppressed in
part by IL-18 reduction following ingestion of BioBran (MGN-3), a
modified arabinoxylan from rice bran, or its active fraction (LMW).
MGN-3 was hydrolyzed with HCl at 100 °C, and then the hydrolysate
treated with cation or anion exchange resin was fractionated by
molecular weight (high molecular weight fraction (≥2,000,000 Da),
medium molecular weight fraction (2,000,000–400 Da), and low
molecular weight fraction (LMW; ≤400 Da)). We concluded that
LMW has a stronger hepato-protective effect than MGN-3 [12]. The
molecular weight of LMW was measured by ESIMS, and an intense
peak at m/z 409 was observed [12]. LMW is a mixture of monosaccha-
ride and oligosaccharides, constituted by glucose as the main compo-
nent (glucose, 22.8%; mannose, 1.5%; galactose, 0.5%; arabinose, 0.3%;
protein, 2.85%) [12]. In our previous study, the results indicate that
neutral oligosaccharides and monosaccharides in the LMW seem to
be candidates for the effective ingredients for treating GalN-induced
liver injury.

IL-18 is a unique activating cytokine belonging to a novel family
of inflammatory cytokines that function in the immune response
[13–16]. In an animal experimental model, IL-18 is released from
murine macrophages or Kupffer cells through Toll-like receptor 4
(TLR4)/CD14-dependent signaling pathways [17].

http://dx.doi.org/10.1016/j.intimp.2012.10.012
mailto:egashira@faculty.chiba-u.jp
http://dx.doi.org/10.1016/j.intimp.2012.10.012
http://www.sciencedirect.com/science/journal/15675769


765S. Zheng et al. / International Immunopharmacology 14 (2012) 764–769
TLRs, members of the pattern recognition receptor family, sense
pathogen-associated molecular patterns (PAMPs) for host defense;
however, endogenous components from necrotic cells, referred to
as damage to associate molecular patterns (DAMPs), were recently
shown to activate TLR-mediated signals associated with innate
immune responses [18]. In mammals, 12 members of the TLR family
have been identified [19]. TLR4 is a transmembrane protein, mainly
existing in macrophages, which recognize LPS or LPS-CD14 com-
plexes, and mediates macrophage activation and pro-inflammatory
cytokine release [12,20]. CD14, a key gene of the innate immune
system, functions as a receptor for LPS, a constitutive element of the
bacterial cell wall. As a consequence of the CD14-LPS interaction at
the level of the membrane, TLR-4 becomes activated. TLR-4 plays an
important role in signal transduction in the innate immune response.
Importantly, TLR-4 activates a transcription factor known as nuclear
factor-κB (NFκB), and members of the mitogen-activated protein
kinases (MAPKs) family including p38 kinase (p38), extracellular
stress-related kinase 1/2 (ERK) and stress-activated protein kinase/
c-Jun N-terminal kinase (JNK) [21]. Activated CD14/TLR4 is associated
with hepatic ischemia/reperfusion, regeneration, and alcoholic liver
disease [19].

In an animal model, endotoxin stimulation induces activation of
procaspase-1 in Kupffer cells, which cleaves preformed IL-18 (proIL-18)
into IL-18, resulting in the release of IL-18 [22,23]. IL-18 synergizes
with IL-12 for IFN-γ production from lymphocytes, which fully activates
theKupffer cells to produce large amounts of TNF-α, a potent hepatotoxic
cytokine [17]. However, the currently available data for the role of TLR4
and TLR4-signaling pathways fulminant hepatic failure are not sufficient.

In the present study, to study the mechanisms underpinning the
protective effects of LMW against GalN-induced acute liver injury,
we investigated the TLR4/CD14 pathway, NFκB and MAPKs.

2. Materials and methods

2.1. Reagents

D-Galactosamine hydrochloride (GalN) was obtained from Sigma
Chemicals (St. Louis, MO, USA); the SV Total RNA isolation system
from Promega Corporation (Madison, WI, USA); the first-Strand cDNA
synthesis kit for RT-PCR (AMV) from Roche Diagnostics (Mannheim,
Germany); the SYBR® Premix Ex Taq™ II kit (perfect real-time PCR)
from Takara Bio Inc. (Otsu, Japan); and the reaction mixture for
PCR, AbsoluteTM QPCR SYBR Green mixes from Abgene (Epson, UK).
MGN-3 was provided by Daiwa Pharmaceutical Co. (Tokyo, Japan).
All the other chemicals were obtained from Wako Pure Chemical
Industries, Japan.

2.2. Fractionation of MGN-3 by gel filtration

LMWwas prepared from MGN-3 as described previously in Zheng
et al. [12]. MGN-3 was hydrolyzed with 1 N HCl, at 100 °C for 1 h, and
then the hydrolysate treated with cation or anion exchange resin was
fractioned in low molecular weight, riboflavin (M.W. 376.4) as a
marker.

2.3. Animal and treatment protocols

Male Wistar rats aged 4 weeks (Japan SLC, Hamamatsu, Japan)
and weighing 60–80 g were maintained in an environmentally con-
trolled room at 22±1 °C with a 12 h light/dark cycle (light from
7:00 to 19:00). All the rats were fed with a CE-2 commercial diet
(Clea Japan, Japan) for 4 days, and then with a standard AIN-93G
diet for 7 days.

The rats in the control and experimental groups (n=6) were
intraperitoneally administered with GalN solution at 400 mg/kg on
day 7 of the standard AIN-93G diet feeding, and the standard group
(GalN non-treated group, n=3) was injected with saline solution in
the same manner. At 1 h before GalN administration, in experiment
1 (A), the rats in the experimental groups were pretreated with
MGN-3 or LMW intraperitoneally at 20 mg/kg and 0.05 mg/kg,
respectively. In experiment 1 (B), the rats in the experimental groups
(n=6) were intraperitoneally pretreated with LMW at 0.001, 0.01
and 0.05 mg/kg of body weight. All the rats were fasted for 4 h before
and after the GalN treatment (8 h in total).

The rats were anesthetized with pentobarbital at 8 or 24 h after
the GalN or saline treatment. Blood was taken from the heart, and
the liver was carefully removed and immediately frozen in liquid
nitrogen. Serum was obtained from the blood by centrifugation at
3000 ×g for 20 min at room temperature. The care and treatment of
the rats were carried out in accordance with “The Ethical Guideline
for Laboratory Animals” prescribed by Chiba University.

2.4. Transaminase activities

Alanine amino transferase (ALT, C.E.2.6.1.2) and aspartate amino
transferase (AST, C.E.2.6.1.1) activitieswere analyzed by a Transaminase
CII-test Wako kit in accordance with the manufacturer's instructions.

2.5. Real-time quantitative PCR

Total RNA was isolated from the liver using the SV Total RNA
Isolation system. cDNA was then synthesized from 1 μg of RNA
by using a First-strand cDNA Synthesis kit for RT-PCR (AMV). Quan-
titative real-time PCR (qRT-PCR) was performed for CD14, TLR4
and the housekeeping gene encoding glyceladehyde-3-phosphate-
dehydrogenase (GAPDH) using the ABI PRISM 7000 sequence detec-
tion system (Applied Biosystems, CA, USA). The reaction mixture
was composed of Absolute QPCR SYBR Green Mixes (12.5 μL),
forward and reverse primers (5 μM, 1 μL of each), nuclease-free
water (8 μL), and a cDNA sample (2.5 μL).

The primers used for CD14 (GenBank Accession no. XM_039364)
were as follows: forward, 5′-CAGGAACTTTGGCTTTGCTC-3′; reverse,
5′-ACCGATGGACAACTTTC AGG-3′; Those for TLR4 (GenBank Accession
No. NM_019178) were: forward-5′-CAGGAACTTTGGCTTTGCTC-3′;
reverse-5′-TCAAGGCTTTTCCATCCAA C-3′. Those for GAPDH (GenBank
Accession no. AB017801) were as follows: forward, 5′-TGCCAAGTAT
GATGACATCAAGAAG-3′; reverse, 5′-AGCCCAGGATGCCCTTTA GT-3′.
The PCR conditions were as follows: 30 s at 95 °C for 1 cycle; 5 s
at 95 °C and 31 s at 60 °C for 45 cycles; and finally 15 s at 95 °C,
1 min at 60 °C, and 15 s at 95 °C. The results were analyzed by ABIs
sequence detection system software (Applied Biosystems, CA, USA).

2.6. Western blot analysis

Liver tissue was removed and frozen at −83 °C until use. Homog-
enization was basically performed as previously reported [24]. Sam-
ples were homogenized on ice in five volumes of extraction buffer
containing 100 mM Tris–HCl (pH 7.5), 200 mM sodium chloride,
100 μM Triton and 100 μM EDTA. All debris was removed by centrifu-
gation at 13,000 ×g at 4 °C for 15 min, and the supernatant obtained
was used for western blot analysis. Protein concentrations were
determined by BCA protein assays. Thirty micrograms of protein
extracts was fractionated on 10% polyacrylamide-sodium dodecyl
sulfate gel, and then transferred to nitrocellulose membranes. Mem-
branes were blocked with 5% (w/v) fat-free milk in Tris-buffered
saline (TBS) containing 0.05% Tween-20, followed by incubation
with primary antibodies against inhibitor of κB kinase-α (IκB-α;
Santa Cruz Biotechnology, USA; dilution ratio; 1:1000), p-p38,
p-JNK, p-ERK, total p38, total JNK, total ERK (Cell Signaling Technology,
USA; all at 1:200), and β-actin (Cell Signaling Technology, USA; 1:500),
at 4 °C overnight. Then, membranes were treated with anti-rabbit
IgG (H+L) HRP-conjugated secondary antibody (Promega, Madison,
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Wisconsin, USA; dilution ratio; 1:2000). The immunoblot was exam-
ined by Chemiluminescent HRP Substrate (Cat. NO: WBKLS0100;
ImmobilonTM Western, MA, USA), according to the manufacturer's
instructions. Membranes were exposed by a FUJIFILM Luminescent
Image Analyzer LAS-1000 (MacintoshTM, USA). The intensities of
the resulting bands were quantified by Quantity One software on a
GS-800 densitometer (BioRad, Hercules, CA, USA).

2.7. Caspase-1 concentration in rat liver

Rat liver samples were analyzed for caspase-1 activity using the
FLICA Apoptosis Detection Kit (Caspase-1 FLICA; Immunochemistry
Technologies, LLC, Bloomington, USA) in accordance with the
manufacturer's instructions.

2.8. Statistical analysis

All the values in the figures and text are expressed as the mean±
SEM. Scheffe's multiple-comparison test was applied when significant
differences were obtained by one-way analysis of variance. The level
of significance was Pb0.05.

3. Results

3.1. Hepato-protective effect of MGN-3 and LMW

Rats treated with GalN alone developed hepatocellular damage, as
evident from a significant elevation in serum transaminase assays.
Pre-treatment with MGN-3 by intraperitoneal injection afforded sig-
nificant protection against GalN-induced liver injury. Pretreatment
with LMW showed the same effect as MGN-3 (Fig. 1A).

LMWwas administered to the rats at three different doses to quan-
titatively study the protective effects of LMW against GalN-induced
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liver injury. The AST and ALT activities of the LMW-treated groups
injected at a dose of 0.05 mg/kg were significantly lower than those
of the control groups (Fig. 1B).
3.2. Effect on liver caspase-1 activity

We then measured caspase-1 activity in rat liver and found no
significant differences among the three groups (Fig. 2).
3.3. Effect on liver CD14 and TLR4 mRNA expression

This experiment showed that the liver mRNA CD14 expression
levels of the GalN treated group were significantly higher than
those of the normal (standard group) 8 h after GalN treatment.
There were significant changes when the rats were pretreated with
LMW, and we also observed a significant decrease in the liver CD14
mRNA expression level of the LMW group compared with the control
group (Fig. 3B).

Fig. 3A shows the liver TLR4 mRNA expression levels of the stan-
dard group, GalN-treated group and LMW-treated group; there
were no significant differences in liver TLR4 mRNA expression levels
among the three groups. However, we found a similar trend of CD14
mRNA expression levels among the groups compared.
3.4. Effects on IκB expression

The translocation of NFκB to the nucleus is preceded by the phos-
phorylation and proteolytic degradation of IκBα. To determinewhether
the inhibitory action of LMWwas due to its effect on IκBα degradation,
the cytoplasmic levels of IκBα protein were measured by western blot
analysis. Eight hours after GalN treatment, IκBα protein was decreased
in the GalN-only group, but it had returned to near-normal in the
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LMW-pretreated group (Fig. 4). LMW had a strong ability to inhibit
GalN-induced IκBα degradation.

3.5. Effect on MAPK expression

We next determined whether LMW affected MAPK phosphoryla-
tion. GalN treatment significantly increased the phosphorylation of
ERK, JNK and p38 in the liver at 8 h. As shown in Fig. 5, pretreatment
with LMW significantly inhibited GalN-activated phosphorylation of
JNK in the liver tissues of rats, but not p-ERK or p-p38. Also, the levels
of ERK, JNK and p38 protein were similar in all groups.

4. Discussion

Acute liver diseases constitute a global concern, and medical treat-
ments for these diseases are often difficult to manage and have limit-
ed efficacy. Therefore, there has been considerable interest in the role
of complementary and alternative medicines for treatment of liver
diseases [25].

GalN is used as an experimental model of severe hepatic damage
that closely resembles human viral hepatitis, due to its ability to
inhibit RNA and protein synthesis in the liver, resulting in the subse-
quent release of endotoxin from the intestine [5,26–28]. Endogenously
produced endotoxin has been implicated as a cofactor in GalN-induced
hepatocellular injury, death [29,30] and TNF hypersensitivity [31]. GalN
is known to sensitize animals both to the lethal effects of LPS and to a
principal LPS-induced mediator, TNF-α [32]. In our previous experi-
ments, we showed that serum AST and ALT activities in GalN-treated
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rats were suppressed by preceding intraperitoneal injections of
MGN-3 or its active fraction, LMW;moreover, liver IL-18mRNA expres-
sion and serum IL-18 concentrations were significantly suppressed by
the administration [12]. In the present study, we report for the first
time that the induction of hepatic injury by GalN injection in the rats
was associated with elevated TLR4/CD14 mRNA expression, and IκB
and MAPK signaling pathways in the liver. Pretreatment with LMW at
0.05 mg/kg was found to repress the elevation of CD14 mRNA expres-
sion, inhibit I-κB degradation and decrease p-JNK protein levels in the
liver after GalN injection.

IL-18 is reported to be related to many kinds of immunological
and inflammatory events [33]. For example; serum IL-18 concentra-
tion levels were observed to be increased in a murine atopic dermati-
tis model [34] and in a bronchial asthma model [35]; overexpression
of IL-18 caused substantial liver injury in mouse [36]. In addition,
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plasma IL-18 concentration was shown to increase significantly in
patients with liver injury caused by hepatitis C virus [37–39]. It requires
intracellular processing for its secretion; mature IL-18 (18 kDa) is se-
creted after cleavage of the inactive precursor (23 kDa) by caspase-1
[40,41]. In the present study, we focused on caspase-1, which was orig-
inally designated as IL-1b converting enzyme [41,42]. Kupffer cells from
caspase-1-deficient mice did not secrete IL-18 after LPS stimulation,
whereas those from wild-type C57BL/6 mice did [41]. LPS challenge
induced IL-18 in the serum of Propionibacterium acnes-primed
wild-type C57BL/6 mice, while IL-18 was not observed in the serum of
P. acnes-primed caspase-1-deficient mice. To determine whether the
inhibitory action of LMW on IL-18 was due to its effect on the decrease
of caspase-1, rat liver caspase-1 activity was measured. However, there
were no significant differences among the three groups. It suggested
that the reduction of IL-18 levels by LMWpretreatment was not associ-
ated with caspase-1. A similar caspase-independent processing of IL-1b
has also been reported in P. acnes-primed Kupffer cells [43]; IL-1b
belongs to the same family as IL-18.

In our previous study, LMW significantly suppressed IL-18 mRNA
in rat liver [12]. This change is consistent with the hypothesis that
endotoxin binds to CD14, activates the Kupffer cells via TLR4, and
elicits the production of NFκB and MAPKs. Activation of the tran-
scription factor NFκB is known to transcriptionally regulate a varie-
ty of genes related to inflammatory processes [44]. The regulation
of IL-18 gene expression is also accompanied by effects on NFκB
activation [45].

Apoptotic signaling in GalN-induced acute liver injury was ob-
served. The early cellular signal transduction pathways responsible
for the activation of NFκB were triggered, and this led to tissue dam-
age [46]. Likewise, we demonstrated that liver damage initiated by
GalN led to early activation of nuclear translocation of NFκB, which,
in turn, promoted expression of IL-18 mRNA in the rat liver. This
proinflammatory response can be abrogated by LMW, which exerts
hepato-protective activity.
The MAPK family plays important roles in the regulation of cell
proliferation and cell death in response to various cellular stresses.
It has been reported that administration of GalN causes activation of
MAPKs [47].

In the present experiments, the phosphorylation of the three
MAPKs, JNK, ERK1/2 and p38, in the rat liver were determined. We
observed increased levels of activated ERK, JNK, and p38 MAP kinases
after GalN administration. Interestingly, LMW attenuated increases in
activated JNK, but had no effect on p-ERK1/2 and p38 MAP kinase. It
has been reported that the JNK signaling pathway plays an important
role in regulating the expression of IL-18 in heat-shocked murine
macrophages [48]. We reported that LMW suppressed IL-18 mRNA.
Taken together with Wang's report, our results provide evidence
that LMW inhibits activation of p-JNK.

In the liver, parenchymal and non-parenchymal cells express
Toll-like receptor (TLR) family members for mediating inflammation
under pathological conditions [49]. In recent research, upregulated
TLR4 expression and function was reported in various liver models,
such as partial hepatectomy [50], ischemia–reperfusion [20,51], and
alcohol loading [52,53].

Recent studies showed that the gut-derived endotoxin activates
its cellular receptors CD14 and TLR4, mainly on Kupffer cells but
also on hepatocytes. In addition, it was found that the expression of
TLR4 and CD14 in the liver increased in parallel at 24 h after GalN
administration. We measured TLR4 and CD14 expression in the rat
liver at 8 h after GalN administration to observe the early stage ef-
fects. In our observations, CD14 but not TLR4 was increased by GalN,
and suppressed by pre treatment with LMW. Haziot and colleagues
reported that the strong resistance of CD14-deficient mice to endo-
toxin suggested that CD14 plays a predominant role in endotoxin
shock [54,55]. Jarvelainen et al. [56] investigated how activated
Kupffer cells release proinflammatory cytokines, a process that is reg-
ulated by CD14. In another study, wild-type mice showed more
severe liver injury caused by chronic ethanol feeding compared
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with CD14 knockouts; this result seems to support the findings show-
ing how endotoxin acting via CD14 plays a major role in the develop-
ment of alcohol-induced liver injury [57]. CD14 plays a key role in
innate immunity through the recognition of bacterial endotoxin. From
our results, the protective effects of LMW against GalN-induced hepati-
tis may be due to inhibition of CD14 expression.

This study shows for first time that NF-κB, JNK and CD14 are
involved in the suppressive action of LMW on GalN-induced hepatitis.
Overall, it appears that LMW prevents GalN-induced liver injury by
suppression of inflammatory signaling pathways.
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